

Baker Tilly at a glance

Baker Tilly is the 8th largest accounting network worldwide

- > Top 20 largest firms in the U.S. consisting of more than 1,400 professionals
- > Established in 1931
- > Offices throughout the Midwest and East Coast
 - Chicago
 - Detroit
 - Minneapolis
 - New York
 - Washington DC
 - Wisconsin

Biogas Experience

Baker Tilly has been involved with over 15 biogas projects that are either operating or under construction involving more than \$200 million of funding.

- > Accessing Federal Incentives (ITC, PTC, 1603 grants, NMTC's)
- > Development Support
 - Feedstock agreements, PPA's, heat sale agreements, etc.
 - EPC, O&M and Technology procurement agreements
- > Financial Advisory and Funding Procurement

Anaerobic Digestion and Defining the Feasibility of Waste to Energy Facilities

Historical/Current Case = Current/Future Project Drivers

Current Growth Constraints

Primary Issues

- Cost
 - Disposal of waste
 - > Energy
- **Environmental**
 - > Regulatory compliance
 - Community impact

Potential Opportunities Afforded by Biogas Projects

Industry Growth Potential

Primary Benefits

- Less risk regarding cost of disposal and energy
 - Long-term pricing stabilization
 - Possible reduction of current costs
- Ability to expand on existing footprint
 - Ability to meet other sustainability goals whether mandated internally or externally

Assessing Available Feedstocks

Feedstock Assessment Overview

- > Scope Example:
 - Dairy farming operations / Confined animal feeding operations (CAFOs)
 - Cheese production facilities
 - Publicly owned treatment works (POTW)
- Key factors in determining a viable application for energy production via agriculture/cheese waste feedstocks is understanding:

And all those pesky externalities that come into play when actually developing a viable project...

Mapping Tool

Biogas Potential - Mapping Tool

> A mapping tool allows stakeholders to assess virtually any location in the state for <u>relative</u> biogas potential

http://www.bakertilly.com/Biogas-development-map

Feedstock Assessments for Biogas Projects

Feedstock Assessment

- > There is no "one size fits all" approach to determine where feasible projects may exist
- A critical starting point is the evaluation of feedstock, from the high level assessment presented in this roadmap down to a very granular and source based
- State biogas to energy stakeholders should now have a clear understanding of the starting point for any biogas to energy project within the state

Biogas Feasibility Toolkit

Economic Model and Developer Toolkit Overview

- > A basic economic model and associated toolkit allows stakeholders to bring together the previous topics discussed
- > Evaluate: "is the project potentially feasible?", with "feasible" meaning different things to different project stakeholders, or project "Sponsors"
- > A typical view of what is a feasible project is: "Can the project stand on its own as a viable business entity?"
 - To understand how we get from that basic question to the answer, we must take a very high-level view of the concept of Project Finance

Model Basics

- > <u>Purpose</u>: To perform an initial assessment of the economic potential of digesters at selected farms and dairy processing facilities
- Capabilities: The model is able to evaluate up to 10 farms and 10 processing facilities at the same time
- > Within the model there are a number of "tabs" that interrelated:
 - » Farm Sources Tab
 - » Processing Facility Feedstock Tab
 - » Power Generation Tab
 - » Cost Estimates Tab
 - » Financial Analysis Tab

http://www.bakertilly.com/Biogas-energy-digester

Model Basics – Farm Sources

- > Includes ten assessment areas
- Final Result of the tab: The amount of the methane (CH4) on a yearly basis that could potentially be generated at the farm(s).

Farm 1		
Anaerobic Digestion - Inputs	Inputs	
Animal type	Dairy	
Number of animal units (AU=1000lb)	-	
Animal unit	1.4	
Manure (Ib/AU/day)	82.00	
Total manure (lb/day)	1: 4	
Moisture content (%)	0%	
TSS content (%)	100%	
Total moisture (gal/day)	-	
Total TSS (lb/day)	(. .)	
COD per lb/AU/d	11.00	
Total COD (lb)		
Anaerobic Digestion - Reductions		
Flow (%)	1%	
TSS (%)	5%	
COD destruction rate(%)	70%	
Anaerobic Digestion - Outputs		
Flow (gal/day)	- 4-	
TSS(Ib)	1-(4 -)	
COD (Ib)) (4)	
Power generation potential		
Methane per Ib of COD (ft ⁵)	6.30	
Methane potential per day (ft ⁵ /day)	1941	
Total farm's yearly methane potential CH4 (ft ⁵)	N+1	

Model Basics – Processing Facility Feedstock

- > Includes ten assessment areas
- Final Result of the tab: The amount of methane on a yearly basis that could be potentially generated from the facility's waste

Processing facility 1	
Anaerobic Digestion - Inputs	Inputs
Total flow (gal/day)	3
TSS (%)	0%
Moisture content (%)	100%
Feedstock density (lb/gal)	8.30
Total TSS(lb/day)	924
BOD (lb/gal)	
BOD/COD Conversion factor	1.60
COD(lb/gal)	
Total COD (lb/day)	2
Anaerobic Digestion - Reductions	
Flow (%)	1%
TSS (%)	5%
COD destruction rate(%)	95%
Anaerobic Digestion - Outputs	
Flow (gal/day)	121
TSS(lb/day)	2
COD (lb/day)	1 2
Power generation potential	
Biogas per Ib of COD (ft ³)	8.65
Percent CH4	65%
Methane potential per day (ft ⁵)	
Total facility`s yearly biogas potential CH4 (ft³)	5526

Model Basics – Power Generation

Power generation assumptions				
Parameters	Default setting	User's setting		
Total CH4 Potential (ft³/hr)	-			
Number of Engines	1	-		
Available Gas Volume per Engine (cfm)	Z -	I V		
Electrical Output per Engine (kW)		5-		
Required Gas Volume per Engine (ft³/hr)	2-3			
Heat Recovery Rate (MMbtu/hr)	878	2		
Total CH4 Engine Volume (ft³/hr)	-	-		
Total Engine Gross Electrical Output (Kw)	-			
Electrical Efficiency (%)	0%	0%		
Percent Plant Availability:	90%	0%		
Total kWh/year	-			
Average nameplate generation (kW/engine	373	7.0		
Total nameplate generation (Kw)	-	-		
On-Peak Energy Charge (\$/kWh)		2		
Off-Peak Energy Charge (\$/kWh)				
On-Peak Hours	-	~		
Off-Peak Hours	8760	8760		
Total Yearly Hours	8760	8760		
Blended Electricity Rate (\$/kWh)	0.0000	0.0000		

Model Basics – Cost Estimates Tab

- > Due to specifics of each project, the user needs to specify applicable cost categories
- > In the absence of the specific cost estimates, the user could potentially use cost estimates generated by the AgSTAR program

INITIAL COSTS						
Unit	Number of units	Cost per unit	-	Total		
		A A	- K	H 1.	ž	
\$	0	-		Ll	-	
\$	0	-			7.5	
\$	0	-			7.5	
\$	0				7.5	
\$	1	-			7.5	
\$	0	-			7.5	
\$	0	-		TI		
\$	1	-				
\$	0	-			-	
\$	0	-			.75	
\$	0%		-1		.75	
\$			\$		7.5	
	S S S S S S S S S S S S S S S S S S S	S	Unit Number of units Cost per unit \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 -	Unit Number of units Cost per unit \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 1 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 -	Unit Number of units Cost per unit Total \$ 0 - - \$ 0 - - \$ 0 - - \$ 1 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - - \$ 0 - -	

Model Basics – Financial Analysis

- > The Financial Analysis Tab is organized into four steps:
 - Step 1- Identify sources of funds
 - Step 2- View the power generation outcome
 - Step 3- Identify whether the processed waste is an expense or income
 - Step 4- Identify financial inputs

Step 2 - Power Generation Outcome	Amount			
Amount of waste from farms (ton/year)	Ston 2 Effluents	Innut avnancar	and/or revenue	Fee
Amount of waste from facilities (ton/year)	Step 3 - Effluents: Input expenses and/or revenue Expense % of Volume Amount		\$/Unit	
Nameplate capacity (kW)				J/ Office
Yearly generation (kWh)	Flow (gal/year)		- 1	-
Heat recovery (MMBtu/year)	TSS (ton/year)	0%	\ -	
Renewable Energy Credits (based on MWh)	COD (ton/year)	0%	<u> </u>	= =
* MMBtu = 1 million Btu	Revenue	% of Volume	Amount	\$/Unit
	Flow (gal/year)	100%		-
	TSS (ton/year)	100%	2 .	-
	COD (ton/year)	100%		-

Model Basics – Project Summary

Project Summar	ry
DAVED T	TITV
Heat & Power Generation Potential	
Number of farms	0
Number of processing facilities	0
Total methane potential (ft ^s /hr)	0
Type of project	Heat & Electricity
Project nameplate capacity (kW)	0
Electricity generation (kWh/year)	-
Heat generation (MMBtu/year)	
Project Budget and Returns	
Total initial costs (\$)	0
Yearly O&M costs (\$)	- Y
Electricity rate(\$/kWh)	
Heat rate (\$/MMBtu)	
Y1 Pretax income (\$)	-
Y1 Debt Coverage Ratio	n/a
Net Preset Value (\$)	* * * * * * * *
Internal Rate of Return (%)	#NUM!

Private development of high strength liquid waste digester with 3.0+ MW from 5+ large food manufacturers' feedstocks

- Primary Driver long-term cost and environmental risk associated with land application of waste water
- Assembled long-term (10-years) feedstock contracts w/tipping fees
- > Able to procure power purchase agreement at adequate rate
- Utilized proven technologies with performance guarantees acceptable to debt community (non recourse debt)
- Utilized combination of equity, mezzanine funds, vendor financing state loans, NMTC funds and debt to finance (approx. \$28.5 MM project)

Public expansion turned private development with 1.5+ MW of electrical power from 3 large food manufacturers' feedstocks

- Primary Driver Opportunity to expand core manufacturing and manage odors in community with overburdened POTW
- > Formed joint venture to take advantage of economies of scale
- Negotiated 20 year power sales with local utility at adequate rates
- > Paired NMTC and 1603 grant to offset capital costs of project
- > \$30 MM investment

Candor. Insight. Results.

Joel Laubenstein
Manager
Energy & Utilities

- Joined Baker Tilly's Renewable Energy Development Support team in 2008
- > Specializes in new business opportunities in renewable energy
- Provides overall project development for renewable energy developers
- > Technology experience: biogas, wind, solar, geothermal

joel.laubenstein@bakertilly.com

608.240.2650